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Abstract. Electron density T-hulls have been proposed earlier for the analysis of 
various molecular shape constraints in solvent-solute interactions and in bio- 
molecular complementarity. Some relations between T-hulls have been applied to 
relative shape analysis of molecular electron density contour surfaces (MIDCOs). 
In this contribution, theorems on several additional properties of T-hulls are 
proven. The results are suitable for comparisons between shape analysis results 
obtained using different reference molecules, for example, if shape comparisons are 
carried out using different solvent molecules as shape reference. 
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1 Introduction 

For a given reference object T, the ordinary T-hull (S)r of an object S is the 
intersection of all rotated and translated versions of T which contain S. Elabo- 
ration of the definition and some fundamental properties of T-hulls have been 
described in Refs. [1-3] and will not be repeated here. The T-hull is a generaliza- 
tion of the e-hull introduced by Edelsbrunner et al. [4]. For a-hulls, the reference 
objects T are restricted to generalized disks of radius 1/cq for the more general 
T-hulls the reference object T can be chosen essentially arbitrarily [1-3]. In Fig. 1, 
a simple example is shown where the reference object T is a disk; in Fig. 2 a more 
general example is shown. T-hulls are useful for relative shape characterization 
of molecules; for example, if object T is chosen as the complement of a body 
representing the shape properties of the solvent molecule, then the T-hull of 
a solute molecule S describes the solute molecule encompassing spatial region 
which is contactable by solvent molecules, and as such (S)r neatly encodes 
geometrical constraints on solute-solvent interactions. 

2 Shape envelopes and T-hull relations 

In Fig. 2, some of the basic concepts and one of the new results are illustrated by 
several sketches. This example also illustrates one of the applications of the results 
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Fig. 1. The generation of the T-hull 
(S)r of a triangle S using a disk T as 
reference object. This T-hull (S)r is 
in fact an e-hull where • is the 
reciprocal of the radius r of the disk T 

Fig. 2. Illustration of some T-hull 
relations and the statement of Theorem 1, 
with respect to complements 
T =  - - ( - - r )  a n d r ' =  - - ( - - r ' ) o f  
reference objects - T and - T', 
respectively, taken as representatives of 
two different solvent molecules, and object 
S, representing a solute molecule 

for the study of relative shapes and  sizes of solvent contact  surfaces. One  may 
regard objects - T and  - T '  (where the no ta t ion  - T stands for the complement  
of reference object T )  as two different solvent molecules. The T-hulls  and  T '-hulls 
of various objects, such as ( S ) r  and  ( S ) r ,  of the solute molecule S, are interpreted 
as the intersect ions of all those versions of the complements  - ( - T )  = T and  

- ( - T ' )  = T '  of the solvent  molecules - T and  - T '  which conta in  the solute 
molecule S. Notice that  each version of T that  contains  S corresponds to an 
a r rangement  of solvent  molecule -- T and  solute molecule S where the solvent 
- T and  solute S do no t  overlap. Taking  the intersections for all these arrange- 

ments,  the cor responding  T-hul l  ( S ) r  is obtained.  Similarly, the T ' -hu l l  ( T ) r ,  of 
- - ( -  T ) =  T is the intersection of all those versions of the complement  
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- ( - T ' )  = T '  of the second solvent molecule - T '  which contain the com- 
plement - ( - T )  -- T of the first solvent molecule - T. 

First, we shall prove an elementary property of T-hulls, illustrated in Fig. 1. 

Theorem 1. I f  T and T '  are two reference objects such that 

( T ) r ,  = T, 

then for the respective T-hull and T'-huIl of S, the relation 

(1) 

holds. 

( S ) r  ~ ( S ) r ,  (2) 

Proof If ( r ) r ,  = T, then T is an intersection of some versions of T ' .  Then, 
indeed, every version of T is an intersection of some versions of T' .  Consequently, 
( S ) r ,  that is an intersection of some versions of T, is also an intersection of some 
versions of T ' ,  where each version of T '  contains S. However, this latter intersec- 
tion does not necessarily involve all versions of T '  which contain S. By contrast, 
( S ) r ,  is an intersection of all versions of T '  which contain S. Consequently, 
relation (2), ( S ) r  ~ ( S ) r , ,  follows. Q.E.D. 

For  the general case, this result cannot be made stronger by replacing the sign 
of inclusion with the sign of equality in relation (2). The following example shows 
that if ( T ) r ,  = T, then ( S ) r  = ( S ) r ,  is not necessarily true. If, for bounded 
reference sets T and T',  T '  ~ T, T '  ~ S, but S does not fit within any version of 
T, that is, if T,  ~ S for every version Tv, then ( S ) r ,  is bounded and ( S ) r  is the 
empty intersection, that is, the full space. Consequently, ( S ) r  ~ ( S ) r , ,  but 
( S ) r  ¢ ( S ) r , .  It is easy to find other examples. 

Based on this theorem, the property ( T ) r ,  = T suggests a simple method for 
predicting some of the results of relative shape analysis with reference to one 
solvent from a relative shape analysis with reference to another solvent. If T~ and 
T :  are the complements of shape representations of the two solvent molecules, 
and if the condition (Ta ) r2  = T1 holds, then according to the proven theorem, 
( S ) r l  ~ (S) r2 .  This means that the second solvent is at least as "accommodating" 
for the actual shape of the solute molecules S as the first solvent, and one can 
a priori expect stronger attractive interactions between the solute and the second 
solvent than those between the solute and the first solvent. 

The family of versions Tv of reference object T can be chosen in a variety of 
ways; some choices have been described in [1,2]. Whereas the most important  
transformations within the chemical context are the combinations of 3D trans- 
lations and rotations, nevertheless, various constrained motions, as well as addi- 
tional freedoms, such as reflections, have been considered [1, 2]. 

In many instances, the constraints can be described by group theoretical means. 
For  example, we might consider a group 6; of geometric transformations G, a 
subgroup of affine transformations, such as rotations, translations, reflections, 
collineations, and combinations thereof. 

Two versions, Tv and T~,, of reference object T are considered G-equivalent if 
both T~ and T~, are derived from reference object T by an allowed transformation. 
The set of G-equivalent versions T~ of T is denoted by 

V(T, G) = {aT: 6 e o}. (3) 
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Set V(T, G, S) is a subset of V(T, G), containing all those versions T~ from V(T, G) 
which contain set S: 

V(T,G,S)  = {T~6 V(T,G): S c Tv}. (4) 

The G-constrained T-hull (S)T of S is 

(s>~ = N T~. (5) 
Tv e V (T, G,S) 

Theorem 2. Iffor objects S, S', and reference object T the relations S c S' c T hold, 
then for the respective T-hulls 

(S ) r  = (S'>T, 

with (S)T  = ( S ' ) T  / fS '  c (S)T .  

(6) 

Proof Since S c S', there can be no more Tv, versions containing S' than Tv 
versions containing S, and one has 

V (T, G,S) ~ V (T, G,S'). (7) 

Consequently, the intersection of all Tv E V (T, G, S) will be a subset of the inter- 
section of all Tv, E V (T, G, S'), hence 

(s>T = (s'>r, (8) 

thereby proving the main assertion of the theorem. 
If S' c (S )T ,  then S' is contained in every version T~¢ V(T,  G,S), hence 

V (T, G,S) ~ V (T, G,S'). (9) 

Consequently, if S' c (S)T,  then the intersection of all T~, ~ V(T, G,S') will be 
a subset of the intersection of all T, ~ V (T, G, S), hence 

(S)T  = (S ' )T .  (10) 

That is, if S' c (S)T ,  then combining relations (8) and (10) gives 

(S)T  = (S ' )T.  Q.E.D. (11) 

Note that the case of equality, S ~ S ' c  (S)T  implying (S)T  = (S ' )T ,  is 
Theorem 3 of Mezey I-3-1. 

Since S ~ (S)s ,  always holds, and if S c S' ~ T, then (S)s ,  c T, hence 

S c (S)s ,  c T, (12) 

consequently, we may replace S' by (S)s ,  in Theorem 2 to yield 

Corollary. For S c S' c T, 

(S )T  c ( ( S ) s , ) z ,  (13) 
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with (S)T  = ( ( S ) s , ) T  if (S ) s ,  c (S)T .  The special case S ' =  T yields Theorem 
1 o fmezey  [3]. 

Theorem 3. For S ~ S' ~ T, the relation 

(S)T  = (S)<s,>T (14) 

holds, with 

if 

(S)T  = (S><s,>, (15) 

(S)T  = (S ' )T .  (16) 

Proof The intersection of members of set V((S ' )T ,  G, S) is such that these mem- 
bers are allowed G-transforms of intersections of members of set V(T, G, S'). That  
is, the set (S)<s,>T is an intersection of certain G-transforms Tv, = G' T, G ' e G ,  
where each such GT transform contains S: 

S c Tv = G' T. (17) 

The family V((S ' )T ,  G, S) of these T~, = G'T transforms is a subset of the family 
V(T, G, S) of versions Tv of T fulfilling the condition 

S c Tv = GT. (18) 

That  is, for the family V(T,  G, S) of all allowed G-transforms T~ -- GT which 
contain set S, the following holds: 

V(T, G,S) D V( (S ' )T ,  G,S). (19) 

Consequently, for the corresponding intersections 

= (s)<s,>T (20) 

holds, and this proves the main assertion of the theorem. 
I f  (S )T  = <S')T, then (S)<s>T is the intersection of various allowed transforms 

G < ( S ) r  of (S)T,  and this intersection cannot exceed (S)T  itself: 

(S)T  = (S)<s>T. (21) 

Comparison of this relation to relation (20) taken with S' = S yields 

(S )T  = (S)<s>,. Q.E.D. (22) 

Setting S' = S in the main result of the theorem yields Theorem 2 of Mezey [3]. 
Theorem 1 of this work can also be regarded as a special case of Theorem 3 proven 
here: if (S ' )T  = S', then by renaming T as T ' ,  and renaming S' as T, Theorem t 
follows. 

For  iterated T-hulls the following notation is useful: 

(S)T  = (S)sub(T). (23) 

Corollary. For a series of nested sets, 

S (°) ~ S (1) c S (2) ~ S (3) c ... S (k) c T, (24) 
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the relation 

(S(°))T ~ (S(°))sub( (SO))~b(  (S(Z))~ub( (S(3)) ... s u b ( ( S ( k ) ) ~ b ( r ) ) . - - ) ) )  

holds. 

D. J. Klein, P. G. Mezey 

(25) 

3 Summary 

The  T-hull ,  a genera l iza t ion  of the  convex hull of objects  accord ing  to a "bias" with 
respect  to a reference shape  T, offers a new tool  for molecu la r  shape analysis.  
Several  p roper t ies  of T-hul ls  are  proven,  offering shor tcuts  when compar ing  shape  
analysis  results  ob t a ined  with different reference shapes, for example,  with respect  
to different solvent  molecules.  
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